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Abstract Purpose: A common goal of gene expression microarray studies is the development of a classi-
fier that can be used to divide patients into groups with different prognoses, or with different
expected responses to a therapy.These types of classifiers are developed on a training set, which
is the set of samples used to train a classifier.The questionof howmany samples are needed in the
training set to produce a good classifier from high-dimensional microarray data is challenging.
Experimental Design:We present a model-based approach to determining the sample size
required to adequately train a classifier.
Results: It is shown that sample size can be determined from three quantities: standardized fold
change, class prevalence, andnumberof genes or features on the arrays. Numerous examples and
important experimental design issues are discussed. The method is adapted to address ex post
facto determinationof whether the size of a training set used to develop a classifier was adequate.
An interactive web site for performing the sample size calculations is provided.
Conclusion:We showed that sample size calculations for classifier development from high-
dimensional microarray data are feasible, discussed numerous important considerations, and
presented examples.

This review provides guidance on how to determine the
number of arrays needed for microarray studies in which the
objective is to construct a classifier based on gene expression.
These types of studies are referred to as classifier development
studies or class prediction studies (1). A classifier is a gene
expression–based rule that can be applied to a future sample
to provide a prediction of the class to which the sample
belongs. Here, ‘‘class’’ is used as a general term, which,
depending on context, may refer to patient response to a
treatment, patient vital status 2 years after surgery, histologic
type, etc. If constructing a classifier is the primary goal of the
study, then this goal should be used to guide study design and
sample size determination. Typical classifiers in clinical
contexts are either prognostic, predictive, or both. For
example, a prognostic classifier might classify a group of
patients currently considered to have a homogeneous prog-
nosis into subgroups with distinct prognoses—resulting in a
refinement of the current prognostic system (e.g., American
Joint Committee on Cancer/International Union Against
Cancer stage). A predictive classifier classifies patients based

on their predicted response to a particular targeted therapy,
such as an epidermal growth factor receptor inhibitor. An
example of a classifier that is both prognostic and predictive is
the Oncotype DX classifier (2), which identifies a subset of
breast cancer patients who, under current standards of care,
receive adjuvant chemotherapy but whose prognosis is in fact
so good that the small probability of benefit from chemo-
therapy is negligible.

The purpose of this review is 2-fold. First, to present a less
technical, and more clinically oriented, version of our earlier
sample size results accessible to non–statisticians involved
in the design of these types of studies; and second, to extend
our previous results (3) with new material. Our 2007 report
presented a model-based approach to sample size determi-
nation, and contrasted with the one previous article on the
topic (4). The sample sizes explored in the 2007 report
were restricted to the situation of equal representation from
each class. This review presents analyses of the effect of
prevalence imbalance on sample size. Using mathematical
techniques to eliminate as many unknowns as possible, we
present a novel listing of the minimal set of information
needed to make a sample size determination, and give
examples of how data from previous experiments can be
used to estimate required quantities. This review also adapts
the methodology to the problem of determining ex post facto
whether a training set sample size actually used in an
experiment was adequate. A new web-based program
interface for calculating sample size has been developed to
accompany this review.1 Novel real and synthetic data
examples are provided throughout.

1Available at http://linus.nci.nih.gov/brb/samplesize/.
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Materials andMethods

A two-step model for classifier development. A mathematical model
for developing a classifier has two steps. The first step models the
process of selecting genes that are differentially expressed (DE) between
the classes, and the second step models the construction of the classifier
out of these DE genes. There are a variety of methods for identifying DE
genes, but each is trying to do the same thing, i.e., include ‘‘informative’’
genes and eliminate ‘‘noise’’ genes from the classifier. Our method
models the first step as follows: genes are selected based on gene-
specific P values from t tests. Although the resulting multigene
predictors are more complex than single-gene diagnostics traditionally
studied, the genes included in such classifiers represent a vast reduction
in scale compared with the tens of thousands of genes represented on
modern microarrays. Although such a reduction is not required, it is
almost always done in practice.

How many genes to include in the classifier. How many genes is a
good number to have in a predictor? Intuitively, the larger the
differences between the classes relative to the biological heterogeneity
within each class, the easier it is to find a good classifier, and the
more likely it is that a short gene list will be adequate. For example,
if one is comparing different types of cancer samples, such as acute
myeloid leukemia and acute lymphocytic leukemia, one may expect to
have many genes with large differences in expression between the
classes. So a classifier with a handful of genes may do about as well as
one with thousands of genes, and there are probably lots of different
handfuls that could do. More specifically, if the standardized fold
change2 for DE genes is 2.0, then 6 DE genes provide enough
separation between the classes to obtain an accuracy of 98%, whereas
50 DE genes provide enough separation to obtain >99% accuracy—a
marginal improvement. An example of this type of large standardized
fold change is seen in a study of acute myeloid leukemia and acute
lymphocytic leukemia (1), in which we estimate that standardized
fold changes of >2.0 are present, and it has been found that very short
gene lists perform very well.

When the differences between the classes are not large compared
with the biological heterogeneity within each class, then short gene lists
will not provide adequate separation between the classes. An example
of this type of small standardized fold change is seen in prognostic
signatures for lung cancer (5), in which we estimate that standardized
fold changes of f0.80 are present. To simplify this example, suppose
there really are 50 genes each with a standardized fold change of 0.80
(which is an unlikely oversimplification of the truth). In this case, 6
genes provide enough separation between the classes to obtain 83%
accuracy, whereas 50 DE genes provide enough separation to obtain
99% accuracy—a considerable improvement. So a longer gene list will
be critical to accurate classification. Beer et al. (5) found f50 genes to
be the optimal number.

As can be seen from these examples, the optimal number of genes to
include in a predictor is largely determined by the size of the largest
standardized fold change present. Our method exploits this fact by
optimizing the gene selection step of the model depending on the user-
specified standardized fold change—so that the model reflects a near-
optimal number of genes.

Robust classification versus stable gene lists. Our approach is based
on the expected performance of the classifier for independent cases. As
long as the classification is accurate for independent data, the actual
classifier itself need not be unique. That is, it is not relevant for our
approach whether the selected genes are stable—in the sense that if a
classifier were built on a different set of samples, the same genes would
be selected. The lack of reproducibility of gene lists that have been

noted in some recent publications (6–8) is not an indication that the
classifiers are not robust, as was recently shown by Fan et al. (9).

Sample size and optimal classifier performance. It is critical that the
sample size required for a study be determined by the specific study
objectives. Generic rule-of-thumb approaches are not adequate. For
example, it has been suggested that thousands of samples may be
needed to identify a definitive list of DE genes (7). But the identification
of such a list is not the objective of a classifier development study.
Hence, this finding is not a reason to use very large sample sizes. Using
thousands of samples may be wasteful when far fewer are actually
needed. Moreover, thousands of samples may not even produce a good
classifier. Sometimes, even in high dimensions, there is just no good
classifier. Some examples are given in Table 1 (note that explicit
calculations associated with each figure and table in this review are
provided in the Supplement). For example, row 1 of the table describes
a situation in which the best classifier has a 37% error rate. Table 1 gives
some information about how the number of DE genes and
standardized fold change together influence potential performance.
For example, larger effect sizes have a greater positive effect on potential
performance than larger numbers of informative genes, as can be seen
by comparing 35 genes with a standardized fold change of 0.25
(optimal error rate, 23%) to 14 genes with a standardized fold change
of 0.75 (optimal error rate, 8%). Our approach is focused on the
objective of classifier development, and explicitly takes these facts into
account by adjusting for the performance of optimal classifiers like the
ones listed in Table 1.

Prediction accuracy depends on sample size. Sample size planning for
classifier development is different from sample size planning for testing
a null hypothesis in a clinical trial. In the latter case, the sample size
is usually determined so that statistical power for rejecting the null
hypothesis is at least 0.80 or 0.90 when the true treatment effects are of
a specified size. Increasing sample size in a classifier development study

2 The standardized fold change of a gene is the difference between classes in log
gene expression divided by of the gene’s standard deviation of expression within a
class, as inTable1.

Table 1. Examples of error rates for optimal
prediction rules for a two-class situation

Number of
DE genes

Standardized
fold change

Lowest possible error rate
(%)

7 0.25 37
7 0.50 25
7 0.75 14
7 1.00 9
7 1.50 2
7 2.00 <1
1 0.25 45
2 0.25 43
3 0.25 41
4 0.25 40
5 0.25 39
6 0.25 38
14 0.25 32
21 0.25 29
28 0.25 25
35 0.25 23
14 0.75 8
21 0.75 4
28 0.75 2
35 0.75 1

NOTE: Optimal error rates are >0% due to overlap between the
two populations. For example, for the population described by row
1, seven genes are DE, with fold change 0.25 times the SD
(standardized fold change), and the resulting optimal predictor
has a 37% error rate. Multivariate normal model with diagonal
covariance matrix assumed. Error rates do not depend on the
number of genes on arrays.
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is for improving predictor accuracy rather than to increase power for
testing a null hypothesis.

When considering the classifier accuracy associated with a particular
sample size, say of n = 50, one must take into account the fact that this
accuracy will depend on which 50 samples are ultimately selected for
the training set. Different training sets of 50 samples will produce
different classifiers with somewhat different accuracies. But there will be
some overall average accuracy associated with training sets of size
n = 50, and we will denote this average by PCC(n) . So PCC(n) is the
average probability of correct classification for classifiers built on
training sets of size n . Given n , PCC(n) is a fixed quantity that can be
used for sample size determination. For example, PCC(n) > 0.90 means
that on average samples of size n will produce a classifier with a
probability of correct classification >90%. But, as we have seen, there
may be too much overlap in the population to produce a classifier with
such a high probability of correct classification.

Define PCC(1) as the probability of correct classification for an
optimal classifier3 developed on an infinitely large training set. PCC(1)
takes into account the overlap between the classes in the population.
One can always find a sample size large enough so that PCC(n) is close
to PCC(1). In particular, if one specifies a tolerance c > 0, one can find
n big enough that |PCC(1) - PCC(n)| < c for that n . This motivates the
following sample size objective: given a tolerance c , find a sample
size n large enough so that |PCC(1) - PCC(n)| < c . In other words,
pick n so that the expected accuracy of the resulting classifier is within c
of the best possible classifier.

Results

The minimal set of information required to determine sample
size. We have developed sample size methods that require
only the following minimal set of information be stipulated:

� the largest standardized fold change, as measured by the
difference in average expression between the classes
divided by the within-class standard deviation of expres-
sion of that gene (on the log scale),.

� the number of genes or features on the microarrays, and.
� the proportion of cases and controls in the population.

Each one of these elements is crucial to sample size
determination. The reason that the largest standardized fold
change is required is that the larger this is, the easier the
classification problem, and the smaller the required sample
size. The number of genes or features on the microarray affects
the degree of difficulty of identifying DE genes and determines
the expected proportion of false-positive genes included in the
classifier. The proportion of each class in the population also
affects the expected proportion of false-positive genes, and
hence, the overall sample size requirements.

We will discuss briefly the investigations that have made it
possible for us to eliminate the need for other information,
particularly

(a) what significance level will be used to select genes to
include in the classifier,
(b) what method will be used to construct the classifier,
(c) the number of DE genes, and
(d) the correlation/coregulation structure among the genes.

With regard to (a), methods for the identification of DE
genes can be based on parametric or nonparametric tests, and
may control the false discovery rate (10) or other related
quantities (11). But all these methods have some elements in
common. For example, the more stringent the method for
identification of DE genes, the more likely really informative
genes will be missed. On the other hand, the less stringent the
method, the more likely the gene list will be cluttered with
false-positive genes that are not truly informative and that may
negatively affect classifier performance. So the best method is a
balanced approach stringent enough to weed out uninforma-
tive genes but not so stringent that it also weeds out informative
genes. It turns out that the optimal level of stringency depends
on the sample size. We developed (3) a model-based method
for finding the optimally stringent significance level cutoff to
use in gene selection, defined as the one producing the best
PCC(n). Larger sample sizes and larger effect sizes were
associated with smaller, more stringent optimal P value cutoffs
for gene selection. Our sample size method, which searches
over various sample sizes to find one that is adequate,
automatically selects this optimal significance level each time.

With regard to (b), there are a wide variety of methods for
developing classifiers from gene expression data. On the one
hand, different methods applied to the same data set may
produce classifiers with different error rates. On the other hand,
well-established methods can be expected to result in classifiers
with similar error rates. So, if one takes one of these well-
established methods, and modifies it in a way that negatively
affects the expected performance, the result will be conservative
(large) sample size estimates. Our method is a general linear
method, like the compound covariate predictor (12), but
modified so as to ensure conservative sample sizes. We have
shown, on a number of real and synthetic microarray data sets,
that it produces sample sizes that are conservative under a
variety of methods including compound covariate predictor,
support vector machine, and nearest neighbor methods (3).

With regard to (c), in most situations, it is difficult to
estimate the number of DE genes that will be observed in an
experiment. In order to avoid this, our approach takes the worst
case scenario and uses the number that will result in the poorest
tolerance. This is done by a search over all possible numbers of
informative genes.

With regard to (d), the general formulas we have developed
do take into account gene coregulation by allowing a general
covariance structure among the genes. However, empirical
investigations with both simulated and real data sets indicated
that the assumption of a single informative gene without this
correlation structure adjustment resulted in sample sizes that
were adequate or conservative. Hence, it was clear that the
worst case scenario assumption about the number of DE genes
led to a procedure which was conservative enough, and that the
additional adjustment for the gene correlation structure was not
required. Importantly, we were only able to identify this fact by
developing formulas in terms of covariance matrix eigenvalues
which made it explicit that the covariance structure adjustment
would influence the sample size requirements.

The standardized fold change. To use many of the figures
and tables in this review or our web-based program interface,
one needs an estimate of the standardized fold change. If there
is no data available from an experiment that used similar
samples and platforms, then a hypothesized standardized fold

3 Specifically, this is theprobabilityofcorrectclassificationforanoptimal linearclassi-
fierunder the assumptionsof themultivariatenormalhomogeneous variancemodel.
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change must be used. The hypothesized value can result from
reasoning such as: if the largest standardized fold change size
isn’t at least as big as x, then there is probably too much overlap
between the classes to produce a classifier with clinically
adequate accuracy; here, one would set the standardized fold
change equal to x and compute sample size using Fig. 1, the
tables, or the online program. For example, one might require a
fold change of at least 2 (= 1 on the log-base 2 scale) in the
context of human cancer samples on the Affymetrix GeneChip
U133A platform. We have observed typical median variance on
this platform of f0.71 in several human cancer data sets,
leading to a standardized fold change of 1/0.71 � 1.4.

If data are available from a previous similar experiment that
contained samples from each class, then one can estimate the
standardized fold change from that data. Examples are
presented below. Typically, such a data set will contain
numerous genes that seem to be differentially expressed and
each will have a different standardized fold change size
associated with it. The largest standardized fold change estimate
should be used. However, this will require some care. Because
the observed largest effect size is likely to overestimate the true
largest effect size because of random measurement error, multi-
plying this largest value by a shrinkage factor is preferable. We
recommend using 0.80 as the shrinkage factor, which is the
right factor when the ratio of biological to experimental error
variation is 4.0. An example is provided in the caption to
Table 4. We have shown (3) that if standardized fold change
sizes are uniformly small, then it is often impractical to develop
a classifier that separates the classes well.

Sample size determinations for specific experimental designs.
Samples selected for use in a training set are usually chosen
following one of two sampling designs: (a) random or
consecutive sampling, (b) selecting equal numbers of patient

samples from each class. Different sampling plans will
require different sample sizes, so we treat these two designs
separately.

Under sampling design (a), the proportion in each class in
the training sample is likely to be similar to the population.
Advantages of design (a) are that one can estimate the
classifier’s overall accuracy, and positive and negative predictive
values, from the observed data. With design (b), these
quantities can only be estimated by a weighted analysis that
uses external estimates of population prevalence. A disadvan-
tage of design (a) is that one runs some risk of having only a
very small number of samples from one class, resulting in poor
estimates of the predictor’s actual performance in the under-
represented class and possibly uncertainty about the selection
of cutoff points for classification.

Design a: random or consecutive sampling. In many situa-
tions, the two classes will not be equally represented in the
population under study. For example, a prognostic classifier
may predict recurrence 5 years after surgery, but the recurrence
rate may be only 10%; in this case, the good outcome class
represents 90% of the population and the poor outcome class
represents 10% of the population, so they are unequal. In
developing a predictive classifier of the patients who respond to
a new drug, the response rate is often <50%.

Under random or consecutive sampling, the quality of the
gene list is affected by the prevalence in each class. The quality
will decrease the more unequal the prevalence is. This decrease
in quality will affect the expected accuracy of the predictor
because the predictor is a function of this gene list.

We have extended the application of our sample size
methodology to situations with unequal prevalence from the
two classes to examine the effect of prevalence imbalance.
Results are presented in Tables 2 and 3. As can be seen from the

Fig. 1. Nomogram of the effect of standardized fold change
and tolerance on sample size when the prevalence is 0.50.
Curved lines, total sample size n, with n/2 per group. Arrays
with 22,000 genes assumed.
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tables, the required sample size increases as the prevalence
imbalance increases. Suppose, for example, that one wishes to
develop a predictive classifier of complete response (CR) to a
regimen with a CR rate expected to be f20%. Suppose that one
targets a standardized fold change of 1.4-fold. For a tolerance of
0.05 (Table 3), 83 samples, consisting of f17 CR’s and 66 non-
CR’s would be required. For a less stringent tolerance of 0.10
(Table 2), 63 samples, consisting of f13 CRs and 50 non-CRs
would be required.

Design b: selecting equal numbers of patient samples from each
class. When the training set is constructed by selecting equal
numbers from each class, our sample size formulas can be used
with the prevalence set to 50%. For example, Fig. 1 can be used
for planning classifier development studies. On the X-axis is the
standardized fold change. On the Y-axis is the tolerance. The
lines represent different size training sets, with n/2 from each
class. Suppose that equal numbers of patients from each
recurrence status (F)2 years after surgery will be selected to
assess the potential of prognostic classification. Furthermore,
suppose that a standardized fold change of 0.80, similar to the
article by Beer et al. (5), is anticipated, then for a tolerance of
0.05, the required sample size would be f160 samples (80 per
class). Note that this sample size estimate is smaller than the
estimate from Table 4 (n = 203), because in that table, the
sampling plan was random sampling with unequal prevalence
(75% versus 25%). Raising the tolerance to 0.10 in Fig. 1 results
in a sample size requirement of f120 samples (60 per class).

Small sample sizes and average accuracy. If our method is
used for sample size determination, then the average accuracy
of the resulting classifier will be within the tolerance of the best
possible classifier. In other words, if one repeatedly took
samples of the same size from the population and constructed a
classifier, on average, these classifiers would have that accuracy.
But this level of control might not always be adequate. If there
is substantial variation in classifier performance, then there
might be a high probability that the classifier will have accuracy
well below this average. For example, we generated multivariate

normal data sets with three informative genes (out of 1,000
total genes) with a standardized fold change size of 1.5; for
each data set, we constructed a compound covariate predictor
and calculated (mathematically) the accuracy of each predictor
derived from eight independent replications. When the sample
size was n = 24, the lowest and highest observed accuracies
were 70% and 91%, respectively, producing a range of
21%. When the sample size was n = 100, the lowest and
highest accuracies were 88% and 90%, respectively, with a
range of 2%. Therefore, with a smaller sample size, control of
the averages of these highly variable classification accuracies
may not be adequate.

Example sample sizes estimated from real microarray data
sets. Table 4 gives examples of sample size calculations using
the methods described here for several real microarray data
sets. In the leftmost two columns are descriptions of the data
sets and classes. The sample size actually used in the studies
appears in column 4, along with the actual prevalence (in
parentheses). Our estimated sample size requirements for a
tolerance of 0.10 and 0.05 appear in the right-most two
columns. In these example data sets, sample size requirement
estimates range from 20 to 80 for easier morphology or
signature-based classification problems, such as Golub et al.
(1), Pomeroy et al. (13), and Rosenwald et al. (14). For more
difficult distinctions related to outcome or follow-up, such as
Beer et al. (5) and van’t Veer et al. (15), estimates range from
80 to 200. By comparing the rightmost two columns to the
fourth column, one can determine whether the sample size
actually used in the study was larger than the conservative
sample size estimates produced by our method. If the actual
size used was larger, then the study size was likely adequate.
For example, the Golub et al. (1) study had a much larger
overall sample size than needed. The 1999 article used 72
samples altogether, whereas even our conservative method
indicates that only 23 to 28 samples are required. This may
explain the strong results of the 1999 article. On the other
hand, our method indicates that the Beer et al. (5) and van’t

Table 2. Sample size requirements for tolerance
of 0.10

Standardized
fold change

Prevalence in underrepresented class

15% 20% 25% 30% 35% 40% 50%

2.0 38 36 34 33 32 32 31
1.9 42 38 36 35 35 34 34
1.8 44 43 39 38 37 37 35
1.7 49 46 43 41 40 39 39
1.6 54 49 47 45 43 42 42
1.5 60 55 52 49 48 46 46
1.4 68 63 58 55 53 51 50
1.3 77 70 65 62 59 57 55
1.2 90 81 75 69 67 64 63
1.1 104 93 86 80 76 74 71
1.0 126 113 102 94 89 86 83

NOTE: Sample size for random (or consecutive) sampling.
Standardized fold change is the difference in log-base 2 expression
divided by the within-class standard deviation. The sample sizes
assure that average accuracy, PCC(n), is within the specified
tolerance (0.10) of the optimal accuracy, PCC(1). Microarray with
22,000 genes assumed.

Table 3. Sample size requirements for tolerance
of 0.05

Standardized
fold change

Prevalence in underrepresented class

15% 20% 25% 30% 35% 40% 50%

2.0 50 46 43 41 39 38 38
1.9 56 49 46 44 42 41 39
1.8 60 53 51 48 46 44 43
1.7 66 58 54 52 50 49 47
1.6 74 66 60 57 55 53 51
1.5 84 73 67 62 60 59 58
1.4 95 83 75 70 67 65 63
1.3 110 95 86 80 76 73 71
1.2 130 111 99 92 87 83 82
1.1 156 133 118 108 101 96 94
1.0 190 163 142 129 119 113 107

NOTE: Sample size for random (or consecutive) sampling.
Standardized fold change is the difference in log-base 2 expression
divided by the within-class standard deviation. The sample sizes
assure that average accuracy, PCC(n), is within the specified
tolerance (0.05) of the optimal accuracy, PCC(1). Microarray with
22,000 genes assumed.
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Veer et al. (15) studies might not have used adequate sample
sizes. But this conclusion would be more tentative because our
method is conservative, tending to produce estimates that may
be larger than necessary, so that it is possible that the sample
sizes actually used were adequate.

Ex post facto evaluation of sample size adequacy. A collection
of samples used as a training set sometimes results in a classifier
that performs poorly either in cross-validation or on indepen-
dent data. A natural question is then whether the poor
performance is due to overlap between the classes, or to the
training sample size having been too small. In this ex post facto
context, our mathematical modeling approach can be adapted
to assess whether the null finding is due to the training set
being too small. Table 5 shows examples of how, using our
method, the absolute value of the largest t statistic from an
experiment can be used to get a conservative estimate of the
tolerance associated with the training set size. In applying this
table, it is important to keep in mind that the estimated
tolerances here may be significantly larger than the true
tolerance because this method was developed explicitly to
ensure conservative results. But the method can provide an idea
of whether the tolerance was adequate. For example, suppose a

predictor was developed on a training set and applied to a large
independent validation set. The observed accuracy on the
validation set was 70%. The largest observed t test statistic on
the training set was f7.0 and 50 samples were used (25 per
class). The associated tolerance estimate is 0.06. This suggests
that it may be possible to find a predictor with an accuracy as
high as 76%. Because our method tends to be conservative,
76% would probably be an optimistic estimate of the best
that is achievable. Depending on the context, 76% may still not
be deemed adequate. The poor performance would seem to be
due to overlap between the classes rather than inadequate
sample size.

Discussion

We have presented methods for sample size determination
for class prediction microarray studies and discussed a number
of issues related to classifier development and performance
assessment. We have presented methods for situations in which
one class is underrepresented in the population. Our approach
rests on simplifying assumptions that should lead to conserva-
tive sample size estimates that are large enough, but may be too

Table 4. Application of sample size methods to some well-studied microarray data sets

Data set descriptions Statistics from data set Estimates using our method

Data source
(references)

Classes Maximum standardized
fold change estimate

Sample size used in study
(smaller prevalence)

Sample size for
tolerance 0.10

Sample size for
tolerance 0.05

Beer et al. (5) Alive vs. dead
at 2 years

0.80 67 (25%) 133 203

van’t Veer et al. (15) Metastases vs. no
metastases at
last follow-up

1.02 97 (47%) 82 106

Pomeroy et al. (13) Medulloblastoma
vs. other

1.53 90 (33%) 41 54

Golub et al. (1) AML vs. ALL 2.38 72 (35%) 23 28
Rosenwald et al. (14) GCB vs. non-GCB 1.14 240 (48%) 61 79

NOTE: The second column is the two classes the predictor is trained to distinguish. The third column is the estimated maximum standardized
fold change. Sample sizes (with prevalence) actually used in the previous studies appear in the fourth column. Sample sizes calculated using our
method appear in the rightmost two columns. The number of genes on the arrays was 7,129, 24,482, 7,129, 7,129, and 7,399 (top to bottom).
The maximum standardized fold change size was estimated from the original data using the formula 0.80 �max |tg| � 1

n1
þ 1

n2
. Here max|tg| is the t

test statistic with the largest absolute value. n1 and n2 are the number of samples from each of the two classes, and the 0.80 at the beginning of
the equation is a shrinkage factor used to adjust for the fact that the largest observed t statistic is likely to produce an overestimate of the true
largest standardized fold change due to experimental noise. This shrinkage factor results from assuming that the ratio of biological signal to
measurement error is 4:1—which we have found to be a reasonable estimate (16)—and after applying Bayesian methods (17).
Abbreviations: AML, acute myeloid leukemia; ALL, acute lymphocytic leukemia; GCB, germinal-center B-cell-like large-B-cell lymphoma.

Table 5. After-experiment, ex post facto assessment of sample size adequacy

Largest observed t statistic (in absolute value) Estimated tolerance

Sample size (n = 20) Sample size (n = 50) Sample size (n = 80)

5.0 0.42 0.15 0.11
6.0 0.37 0.11 0.08
7.0 0.27 0.06 0.04
8.0 0.16 0.03 0.02
9.0 0.09 0.01 0.01
10.0 0.05 <0.01 <0.01

NOTE: t statistics are from the gene-specific pooled variance t tests. Assumes 22,000 genes on each array and a prevalence of 50%. Total
sample size is n with n/2 per class.

How Large aTraining Set is Needed forMicroarray Data?
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large, particularly in very easy classification situations with
highly diverse classes. We showed how the approach could also
be applied to the problem of ex post facto determination of
whether a training sample used was large enough. An

accompanying web-based interface for sample size determina-
tion is being made available. Our approach controls the
expected accuracy to be within a specified tolerance of the best
possible accuracy for the population.
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